Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and electrical characteristics of InGaAsN layers grown by LPE

Identifieur interne : 001512 ( Main/Repository ); précédent : 001511; suivant : 001513

Structural and electrical characteristics of InGaAsN layers grown by LPE

Auteurs : RBID : Pascal:12-0194888

Descripteurs français

English descriptors

Abstract

Crystallographic and transport properties of nominally undoped and Sn-doped InGaAsN layers grown by low-temperature LPE have been studied and related to the growth conditions. In the case of lattice matching, flat and uniform mirror-like layers of 8-10 μm in thickness are obtained. The compositions of the layers under study have been determined by combination of X-ray microanalysis and X-ray diffraction methods to be In0.035Ga0.065As0.086N0014. The lattice mismatch between layer and substrate Δal/as calculated from X-ray diffraction curves is less than-7 x 10-4 for all samples. The layers grown at lower epitaxy temperatures exhibit the highest crystalline quality, better lattice match and better homogeneity. This is in good agreement with the results of morphological study by atomic force microscopy which show root mean-square surface roughness of 0.18 nm for the best layers. CV and Hall measurements reveal that intentionally undoped InGaAsN layers are n-type with free carrier concentration about one order of magnitude higher in comparison to layers not containing nitrogen and high electron mobility values over 2000 cm2/Vs. A dramatic reduction in the free carrier concentration and slightly increase in mobility are observed for Sn-doped InGaAsN layers.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0194888

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural and electrical characteristics of InGaAsN layers grown by LPE</title>
<author>
<name sortKey="Milanova, M" uniqKey="Milanova M">M. Milanova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Central Laboratory of Applied Physics, 59 St. Petersburg Blvd</s1>
<s2>4000 Plovdiv</s2>
<s3>BGR</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<wicri:noRegion>4000 Plovdiv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vitanov, P" uniqKey="Vitanov P">P. Vitanov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Central Laboratory of Solar Energy and New Energy Sources, 72 Tzarigradsko Chaussee Blvd</s1>
<s2>1784 Sofia</s2>
<s3>BGR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<placeName>
<settlement type="city">Sofia</settlement>
<region nuts="2">Sofia-ville (oblast)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Terziyska, P" uniqKey="Terziyska P">P. Terziyska</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Rd</s1>
<s2>Thunder Bay, ON P7B 5Z5</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Thunder Bay, ON P7B 5Z5</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Popov, G" uniqKey="Popov G">G. Popov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Central Laboratory of Applied Physics, 59 St. Petersburg Blvd</s1>
<s2>4000 Plovdiv</s2>
<s3>BGR</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<wicri:noRegion>4000 Plovdiv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Koleva, G" uniqKey="Koleva G">G. Koleva</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Central Laboratory of Applied Physics, 59 St. Petersburg Blvd</s1>
<s2>4000 Plovdiv</s2>
<s3>BGR</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<wicri:noRegion>4000 Plovdiv</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0194888</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0194888 INIST</idno>
<idno type="RBID">Pascal:12-0194888</idno>
<idno type="wicri:Area/Main/Corpus">001E74</idno>
<idno type="wicri:Area/Main/Repository">001512</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>CV characteristic</term>
<term>Calcium selenides</term>
<term>Carrier density</term>
<term>Electrical characteristic</term>
<term>Electron mobility</term>
<term>Free carrier</term>
<term>Gallium arsenides</term>
<term>Gallium nitride</term>
<term>Hall effect</term>
<term>Indium arsenides</term>
<term>Indium nitride</term>
<term>LPE</term>
<term>Mirrors</term>
<term>Mismatch lattice</term>
<term>Operating conditions</term>
<term>Roughness</term>
<term>Tin additions</term>
<term>Transport properties</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Caractéristique électrique</term>
<term>Epitaxie phase liquide</term>
<term>Propriété transport</term>
<term>Addition étain</term>
<term>Condition opératoire</term>
<term>Miroir</term>
<term>Diffraction RX</term>
<term>Accommodation réseau</term>
<term>Microscopie force atomique</term>
<term>Rugosité</term>
<term>Caractéristique capacité tension</term>
<term>Effet Hall</term>
<term>Porteur libre</term>
<term>Densité porteur charge</term>
<term>Nitrure d'indium</term>
<term>Nitrure de gallium</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>Séléniure de calcium</term>
<term>Mobilité électron</term>
<term>InGaAsN</term>
<term>CaSe</term>
<term>6855J</term>
<term>8115L</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Crystallographic and transport properties of nominally undoped and Sn-doped InGaAsN layers grown by low-temperature LPE have been studied and related to the growth conditions. In the case of lattice matching, flat and uniform mirror-like layers of 8-10 μm in thickness are obtained. The compositions of the layers under study have been determined by combination of X-ray microanalysis and X-ray diffraction methods to be In
<sub>0.035</sub>
Ga
<sub>0.065</sub>
As
<sub>0.086</sub>
N
<sub>0014</sub>
. The lattice mismatch between layer and substrate Δa
<sub>l</sub>
/a
<sub>s</sub>
calculated from X-ray diffraction curves is less than-7 x 10
<sup>-4</sup>
for all samples. The layers grown at lower epitaxy temperatures exhibit the highest crystalline quality, better lattice match and better homogeneity. This is in good agreement with the results of morphological study by atomic force microscopy which show root mean-square surface roughness of 0.18 nm for the best layers. CV and Hall measurements reveal that intentionally undoped InGaAsN layers are n-type with free carrier concentration about one order of magnitude higher in comparison to layers not containing nitrogen and high electron mobility values over 2000 cm
<sup>2</sup>
/Vs. A dramatic reduction in the free carrier concentration and slightly increase in mobility are observed for Sn-doped InGaAsN layers.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>346</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural and electrical characteristics of InGaAsN layers grown by LPE</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MILANOVA (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VITANOV (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TERZIYSKA (P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>POPOV (G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KOLEVA (G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Central Laboratory of Applied Physics, 59 St. Petersburg Blvd</s1>
<s2>4000 Plovdiv</s2>
<s3>BGR</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Central Laboratory of Solar Energy and New Energy Sources, 72 Tzarigradsko Chaussee Blvd</s1>
<s2>1784 Sofia</s2>
<s3>BGR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Rd</s1>
<s2>Thunder Bay, ON P7B 5Z5</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>79-82</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000509336550160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0194888</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Crystallographic and transport properties of nominally undoped and Sn-doped InGaAsN layers grown by low-temperature LPE have been studied and related to the growth conditions. In the case of lattice matching, flat and uniform mirror-like layers of 8-10 μm in thickness are obtained. The compositions of the layers under study have been determined by combination of X-ray microanalysis and X-ray diffraction methods to be In
<sub>0.035</sub>
Ga
<sub>0.065</sub>
As
<sub>0.086</sub>
N
<sub>0014</sub>
. The lattice mismatch between layer and substrate Δa
<sub>l</sub>
/a
<sub>s</sub>
calculated from X-ray diffraction curves is less than-7 x 10
<sup>-4</sup>
for all samples. The layers grown at lower epitaxy temperatures exhibit the highest crystalline quality, better lattice match and better homogeneity. This is in good agreement with the results of morphological study by atomic force microscopy which show root mean-square surface roughness of 0.18 nm for the best layers. CV and Hall measurements reveal that intentionally undoped InGaAsN layers are n-type with free carrier concentration about one order of magnitude higher in comparison to layers not containing nitrogen and high electron mobility values over 2000 cm
<sup>2</sup>
/Vs. A dramatic reduction in the free carrier concentration and slightly increase in mobility are observed for Sn-doped InGaAsN layers.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15L</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Epitaxie phase liquide</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>LPE</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Propriété transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Transport properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Propiedad transporte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Condition opératoire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Operating conditions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Condición operatoria</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Miroir</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Mirrors</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>XRD</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Rugosité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Roughness</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Caractéristique capacité tension</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>CV characteristic</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Porteur libre</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Free carrier</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Portador libre</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure de calcium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Calcium selenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>InGaAsN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>CaSe</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8115L</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>149</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001512 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001512 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0194888
   |texte=   Structural and electrical characteristics of InGaAsN layers grown by LPE
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024